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We study the topological configurations and dynamics of individual point defect vacancies and interstitials
in a two-dimensional crystal of colloids interacting via a repulsive Yukawa potential. Our Brownian dynamics
simulations show that the diffusion mechanism for vacancy defects occurs in two phases. The defect can glide
along the crystal lattice directions, and it can rotate during an excited topological transition configuration to
assume a different direction for the next period of gliding. The results for the vacancy defects are in good
agreement with recent experiments. For interstitial point defects, which were not studied in the experiments,
we find several of the same modes of motion as in the vacancy defect case along with two additional diffusion
pathways. The interstitial defects are more mobile than the vacancy defects due to the more two-dimensional
nature of the diffusion of the interstitial defects.

DOI: 10.1103/PhysRevE.75.011403 PACS number�s�: 82.70.Dd

I. INTRODUCTION

Topological defects in two-dimensional crystals are rel-
evant to a number of condensed matter systems including
vortices in type-II superconductors �1�, Wigner crystals �2�,
magnetic bubble arrays �3�, atoms on surfaces, and dusty
plasmas �4�. The creation of topological defects such as dis-
locations and disclinations leads to a two step melting pro-
cess and an intermediate hexatic phase �5–7�. Topological
defects play a role in the mechanical response of the system,
such as when a shear is applied to the crystal, and also de-
termine how effectively the crystal can be pinned to a disor-
dered substrate. More recently, there has been growing inter-
est in studying topological defects in two-dimensional
systems on curved surfaces, such as colloidal particles on the
surface of a liquid drop �8,9�. In addition to providing insight
into how defects can affect equilibrium and nonequilibrium
properties of these systems, understanding how individual
topological defects move would also be valuable for techno-
logical applications, such as the nanoscale or mesoscale en-
gineering of new two-dimensional materials.

In an effort to understand the dynamics of individual point
defects in two-dimensions, recent experiments were con-
ducted in which point defects were artificially created in a
two-dimensional colloidal suspension by manipulating the
colloids with optical tweezers �10–12�. Here, a defect is cre-
ated by removing one or two colloids from a perfect trian-
gular lattice, resulting in a mono-or divacancy. The defect
configurations were shown to have a lower symmetry than
the triangular lattice, and specific topological arrangements
were characterized by the arrangement of fivefold and sev-
enfold coordinated colloids around the cores of the mono-
and divacancies. The experiments showed that the trajecto-
ries of both types of defects followed the major axis direc-
tions of the triangular colloidal crystal. As a result, at short
times the defect diffusion had one-dimensional characteris-
tics.

In this work, we examine the topological configurations
and dynamics of single point vacancies and interstitial col-
loids in a two-dimensional triangular colloidal crystal. Only

vacancies were considered in the experimental work �10–12�,
but here we compare the behavior of vacancies to that of
interstitial defects. We find that the point defects have numer-
ous stable topological configurations as well as several fre-
quently appearing excited configurations. The diffusive ther-
mal motion of the defects is aligned with the major axes of
the crystal, as also seen in the experiments. As the defect
moves, it switches between gliding configurations, which
contain two fivefold coordinated particles, and transient con-
figurations, which contain three or more fivefold coordinated
particles. The defect is able to change its gliding orientation
in the transient configurations. The mobility of interstitial
defects is greater than that of vacancy defects, and we show
that this is a result of the fact that interstitial defects are more
likely to undergo reorientations in their gliding direction than
vacancy defects, giving the diffusion of the interstitial de-
fects a more two-dimensional character. We discuss the im-
plications of our work for other systems, such as the effect of
the motion of interstitial and vacancy defects on transport in
two-dimensional vortex lattices.

II. SIMULATION METHODS

We simulate a two-dimensional colloidal crystal com-
posed of N=1116±1 particles using Brownian dynamics.
The system size is Lx=31a0 and Ly =18�3a0, where distances
are measured in units of the colloid lattice constant a0, and
where we employ periodic boundary conditions in both the x
and the y directions. The overdamped equation of motion for
an individual colloid i is

�
dri

dt
= fi = fcc + fi

T, �1�

where the damping coefficient is �=1 in simulation units.
Here the colloid-colloid interaction force is fcc=
−� j�i

N �iU�rij�r̂ij, where rij = �ri−r j� is the distance between
particles located at ri and r j, and r̂ij = �ri−r j� /rij. We repre-
sent the colloid interaction via a Coulomb potential that is
screened by the presence of ions in the liquid phase, giving
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us the Yukawa form U�rij�=E0q2 exp�−�rij� /rij. The unit of
energy is E0=Z*2 / �4���0a0� where Z* is the unit of charge, �
is the solvent dielectric constant, q=1 is the dimensionless
charge on each colloid, and 1/�=0.16a0 is the screening
length. Our system is in the strongly charged low volume
fraction limit, allowing us to neglect hydrodynamic interac-
tions. The thermal force fi

T is introduced as Langevin random
kicks that obey the equations �fi

T�t�	=0 and �fi
T�t�f j

T�t��	
=2�kBT�ij��t− t��. Temperatures are reported with respect to
the melting temperature fT

m for the two-dimensional crystal.
Throughout this work, we consider temperatures in the range
0.37� fT / fT

m�0.62, which is high enough to produce ob-
servable defect motion, but low enough to fall below the
temperature at which a proliferation of fivefold and seven-
fold defect excitations begins to occur. After initializing the
system in a triangular lattice, we either add or subtract a
single colloid from a location near the center of the sample.
We then measure the time evolution of the system over a
long time period of 2�108 simulation time steps.

The periodic boundary conditions in our sample prevent
the individual defects from annihilating. Since the interaction
between topological defects is well known to be long ranged,
finite size effects are always a concern in a periodic system.
This is particularly important in studies of multiple interact-
ing defects. In our case, we are working with only a single
defect, which experiences a perfectly symmetrical interaction
with its images across the periodic boundaries. This tends to
minimize the impact of the periodic boundaries. To check for
finite size effects, we tested larger systems and did not ob-
serve any changes in the diffusive behavior. Additionally, our
results for the vacancy defects are in good agreement with
experiments, offering further evidence that we have avoided
finite size effects.

III. POINT DEFECT CONFIGURATIONS

To characterize the defect configuration and identify the
position of the defect, we use a Voronoi cell construction
performed after the system has relaxed into a stationary state
from its initial configuration. We can identify the coordina-
tion number zi of each colloid by counting the sides of the
polygons in the Voronoi construction. In an ideal triangular
lattice, all particles are sixfold coordinated with zi=6. Our
system has either a missing particle or an extra particle, and
the defect core is surrounded by a number of zi�6 particles.
We identify distinct topological configurations of the defect
based on the Voronoi cell picture, adopting the same notation
as used in Refs. �11,13�. All of the possible configurations
that exist in this system conserve the average sixfold coordi-
nation of the particles,

�
i=1

N

zi = 6N . �2�

In Fig. 1 we illustrate the most prevalent configurations
for the vacancy defect. Figure 1�a� shows that the twofold
crushed configuration �V2a� consists of two nearly parallel
pairs of zi=5 and zi=7 particles. The split configuration �SV�
for the vacancy, illustrated in Fig. 1�b�, contains three par-

ticles with zi�6, forming an almost straight line with two
zi=5 particles on opposite sides of a zi=8 particle. The third
equilibrium configuration for the vacancy, the threefold sym-
metric configuration �V3� shown in Fig. 1�c�, consists of
three pairs of particles with zi=5 and zi=7 arranged around
the outside of a triangle that is centered on the vacancy.
These configurations are the same as those observed for the
monovacancy in the colloidal experiments �11,12�. Figure
1�d� illustrates an important excited configuration that we
find for the vacancy. This fourfold symmetric configuration,
termed V4�, contains eight colloids with zi�6. It is short lived
and plays a role in the mobility of the vacancy, as will be
described below.

Figure 2 shows the main configurations for the interstitial
defect. Figure 2�a� illustrates a threefold symmetric intersti-
tial, I3, composed of a triangular arrangement of zi=5 and
zi=7 colloids centered around the interstitial. A twofold sym-
metric interstitial configuration, I2, appears in Fig. 2�b�. This
configuration can split to become a disjoint twofold symmet-
ric interstitial, I2d, shown in Fig. 2�c�. The interstitial defect
forms an excited configuration that is similar in form to that
seen for the vacancy defect. Termed a fourfold symmetric
excited configuration, I4�, this interstitial configuration is
shown in Fig. 2�d�. As in the vacancy case, this excited con-
figuration persists only for short times, but as we describe in
Sec. V B, it plays an important role in the motion of the
defect.

IV. DEFECT MOTION AND LOCAL BURGERS
VECTOR DIRECTIONS

To study the motion of the two types of defects, we must
identify the location of each defect. We define the defect

FIG. 1. Voronoi cell construction for commonly observed va-
cancy defect configurations. Colloid positions are indicated by dots.
The Voronoi cells are colored according to the coordination number
zi of the colloids: white, zi=6; light gray, zi=7; dark gray, zi=5;
very dark gray, zi=8. Only a 6a0�6a0 portion of the full system is
shown. �a� A twofold crushed vacancy �V2a�. �b� A split vacancy
�SV� centered on a zi=8 colloid. �c� A threefold symmetric vacancy
�V3�. �d� A fourfold symmetric excited configuration V4� containing
eight colloids with zi�6.
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position rd to be at the center of the Nzi�6 colloids with zi

�6 that are present in the system,

rd =
1

Nzi�6
�
i=1

N

ri�1 − ��zi − 6�� . �3�

With this measure, we can follow the trajectories of a defect
under thermal diffusion.

A. Isotropic temperature

In Fig. 3 we illustrate the trajectory of a vacancy defect
over a period of t=4.3�107 simulation time steps at a tem-
perature of fT / fT

m=0.4. We also indicate the time-averaged
location of the background triangular lattice to show that the
defect diffusion follows the main crystalline lattice direc-

tions, �10�, �01�, and �1̄1�. The defect diffuses by gliding
along the lattice directions in a one-dimensional random
walk, punctuated by occasional reorientation transitions. This
suggests that at short times the diffusive motion has one-
dimensional characteristics, while for long times the diffu-
sion is isotropic. The trajectories we observe are very similar
to those found in the vacancy experiments of Ref. �10� where
the defect moved along the symmetry directions of the crys-
tal. We find that interstitial defects move in a similar manner.
The reorientation transitions that occur during diffusion are
mediated by the formation of either a threefold symmetric
configuration or one of the excited configurations illustrated
in Figs. 1 and 2. We describe the reorientations in more detail
below.

In order to characterize the motion along the different
crystalline axis, we require a definition of the orientation of
the defect as a function of time. The orientation of a dislo-

cation is readily obtained using the Burgers vector b; how-
ever, a point defect has a net Burgers vector of b=0. We can
construct local Burgers vectors b j

l by associating each of the
Nzi=5 colloids that have zi=5 with the closest zi�6 colloid to
form a dislocation, such that each zi=7 colloid is paired with
only one zi=5 colloid, and under the constraint that the total
length, � j=1

Nzi=5�b j
l�, is minimized.

The twofold symmetric configurations, V2a, I2, and I2d,
along with the split vacancy configuration SV, all have only
two local Burgers vectors b j

l which are close to being parallel
to each other. For these configurations, which we refer to as
gliding configurations, we define the orientation of the defect
to be in the direction perpendicular to one of the local Bur-
gers vectors. We also identify the angle 	 j which each Bur-
gers vector makes with the zero y axis. In Fig. 4�a� we plot
the time series of 	1 and 	2 for a system with a vacancy
defect diffusing at fT / fT

m=0.4. The angles are only defined
during the time periods when the vacancy is in the configu-
ration V2a or SV, but the vacancy spends most of the time in
one of these two configurations, which have �	1−	2�
�.
Figure 4�a� shows that 	1 and 	2 remain fixed at a particular
angle for extended periods of time, punctuated by relatively
rapid changes to a new angle. A histogram of the 	 values
with both 	1 and 	2 combined, plotted in polar coordinates
in Fig. 4�b�, indicates that 	 is correlated with the six direc-
tions of the crystal lattice. Within our sampling error, all six
of the angles appear with equal probability.

B. Anisotropic temperature

Many two-dimensional systems contain some type of an-
isotropy which could originate in the particle-particle inter-
actions or from an underlying weak periodic substrate modu-
lation �14–16�. Since we found that the defects move along
the symmetry directions of the crystalline lattice, it may be
expected that if some form of anisotropy is added, the mo-
tion may be more prominent along certain directions. A simi-

FIG. 2. Voronoi cell construction for commonly observed inter-
stitial defect configurations. Colloid positions are indicated by dots.
The Voronoi cells are colored according to the coordination number
zi of the colloids: white, zi=6; light gray, zi=7; dark gray, zi=5.
Only a 6a0�6a0 portion of the full system is shown. �a� A threefold
symmetric interstitial, I3. �b� A twofold symmetric interstitial, I2. �c�
A disjoint twofold symmetric interstitial, I2d. �d� A fourfold sym-
metric excited configuration I4�.

FIG. 3. Diffusion of a vacancy defect at fT / fT
m=0.4. Only a

14a0�14a0 portion of the full system is shown. Dark lines: trajec-
tory followed by the vacancy over a period of 4.3�107 time steps.
Light lines: long-time average location of the crystalline lattice
through which the vacancy is moving. Over short times, the va-
cancy diffuses in the directions of the major axes of the crystal.
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lar system has recently been realized experimentally in a
colloidal system composed of superparamagnetic particles
�17�. With the application of an external magnetic field, the
interactions between the colloids could be made anisotropic.
As a result, dislocations formed in the system with a pre-
ferred orientation, resulting in melting along the direction of
the applied magnetic field.

We consider the effect of adding an anisotropic tempera-
ture to our system by setting fT

x / fT
y 
1, where fT

y is fixed at
fT

y / fT
m=0.62. Under these conditions, the symmetric diffusion

disappears and the defects move preferentially in one direc-
tion. In Fig. 5 we plot P�	� for several different temperature
anisotropy ratios. As fT

x / fT
y is decreased from 1, the value of

P��	=� /2�� increases dramatically while P�	� for the other
four crystal directions decreases. This indicates that the de-
fect spends most of the time with 	 oriented along the y
direction, meaning that the local Burgers vector is oriented
along the x direction. Reorientation transitions for the defect
occur much less frequently than in the isotropic case, causing
the defect to undergo one-dimensional diffusion for much
longer periods of time, and resulting in a highly anisotropic
diffusion over time. Such anisotropic diffusion is consistent
with the results obtained in the experiment of Ref. �17�.

V. PROPERTIES OF THE DEFECT DIFFUSION

We have shown that the defect trajectory follows the main
crystalline directions. The mechanism of defect motion is

primarily a gliding process. In the case of a vacancy defect,
the vacancy can glide in the configurations SV or V2a, which
have parallel local Burgers vectors and a well-defined glide
direction. The one-dimensional gliding motion is inter-
spersed with direction switching transitions that occur by
means of the V3 configuration or the excited V4� configura-
tion. Both of these configurations have higher symmetry than
the gliding configurations but also have nonparallel local
Burgers vectors, and hence no well-defined glide direction.
Thus, when the vacancy enters a transition configuration, the
symmetry breaking that defined a glide direction is lost. The
vacancy spends a relatively short time in the transition con-
figuration before reentering one of the glide configurations,
which may have the same or a different glide orientation than
the glide configuration which preceded the transition con-
figuration. The high symmetry of the transition configura-
tions permit the defect to reorient its direction of motion
along a new lattice direction. Interstitial defects undergo
similar sequences of gliding and reorientation, with the I2
and I2d configurations providing the gliding motion, and the
I3 and I4� configurations permitting the reorientation.

The vacancy position remains stationary when entering a
transition configuration such as V3, but the position of the
interstitial shifts slightly when switching between the I2 or
I2d and I3 configurations, providing an additional mechanism
for interstitial motion that does not exist for the vacancy
defect. It is also possible for interstitial motion to occur
through a “breathing” process caused by transitions between
the I3 and I4� configurations.

We highlight the difference in the mobility mechanisms
for the two types of defects by measuring the individual
jumps of the defects from one lattice position to the next. We
define �xi= (rd,i�t+dt�−rd,i�t�) · x̂ and �yi= �2/�3�(rd,i�t
+dt�−rd,i�t�) · ŷ, where we take dt=200 simulation time
steps. Histograms of both �x and �y are plotted in Fig. 6�a�
for a vacancy defect and in Fig. 6�b� for an interstitial defect.
The vacancy defect moves only by a glide mechanism. The
process of switching between V2a and SV translates the de-
fect center by half a lattice constant along one of the main

FIG. 4. �a� Time series of the orientations 	1 �upper dark line�
and 	2 �lower dashed line� determined from the two local Burgers
vectors b1

l and b2
l in the gliding vacancy defect configurations SV

and V2a for a system with fT / fT
m=0.4. �b� From the same system, a

polar plot of the probability P�	� of observing a vacancy defect
oriented at an angle 	 with respect to the zero x axis.

FIG. 5. P�	�, the histogram of 	 values observed during a simu-
lation run, for different temperature anisotropies in a system with a
vacancy defect. In all cases fT

y / fT
m=0.62. Thick continuous line:

fT
x / fT

y =0.1, dotted line: fT
x / fT

y =0.3, dashed line: fT
x / fT

y =0.5, and thin
continuous line: fT

x / fT
y =0.7.
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crystal axis directions. This produces four nonzero values of
�x, ±cos�0� /2 and ±cos�� /3�, and two nonzero values for
�y, ±sin�� /3� /�3. Since we are plotting the histogram of
both �x and �y in their natural units, which are a0 and
�3a0 /2 respectively, we observe peaks at �x= ±0.25 and
±0.5 and at �y= ±0.5 in Fig. 6�a�. The same peaks appear
for the interstitial defect in Fig. 6�b� since the gliding mecha-
nism also operates in this case, but there are now additional
peaks in �x and �y. These peaks are produced by the other
two processes that can move the interstitial defect: the switch
between the I2 or I2d and I3 configurations, and the breathing
motion between the I3 and I4� configurations. These two pro-
cesses move the defect center half a lattice constant along
directions that lie between the main crystalline directions, at
� /6, � /2, 5� /6, 7� /6, 3� /2, and 11� /6. The result is
peaks at �x= ±cos�� /6� /2
 ±0.43 and peaks at �y
= ±sin�� /6� /�3
 ±0.29 and �y= ±2 sin�� /6� /�3
 ±0.58.

A. Differences in defect diffusion for vacancies
and interstitials

For short times, the defect trajectory follows the main
crystalline directions, as was shown in Fig. 3. On the longer
time scales, however, we find a linear diffusive behavior
when we measure the distance that the defect has traveled
from its original location as a function of time, �r2= �rd�t�
−rd�0��2. This quantity is plotted in Fig. 7 for a vacancy
defect at fT / fT

m=0.4. We find that �r2 increases linearly with
time, as indicated by the fit in the figure. Linear diffusion of
monovacancies was also observed in the experiments of Ref.
�10�.

To compare the mobility of interstitial and vacancy defect,
we measure the diffusion constant D, given by

D = � �rd�t + dt� − rd�t��
dt

� , �4�

with dt=200 simulation time steps, at a series of tempera-
tures for each defect type. The results are plotted in Fig. 8.
The diffusion constant increases with temperature in each
case. Importantly, the interstitial defect diffuses significantly
faster than the vacancy defect at all temperatures.

B. Probability of different defect configurations

To help account for the faster diffusion of the interstitial
defect compared to the vacancy defect, we compare the time
the defects spend in the different topological configurations.
In Fig. 9�a� we plot the probability P of observing each
configuration as a function of temperature fT / fT

m for the va-
cancy defect, and compare this to Fig. 9�b� which shows the
probability of observing interstitial defect configurations ver-
sus temperature.

Figure 9�a� shows that the vacancy defect spends most of
the time in the split �SV� and the twofold crushed �V2a� con-
figurations, which both allow for gliding motion. The excited
configuration V4� occurs very infrequently and does not con-
tribute significantly to the diffusive process. As the tempera-

FIG. 6. �a� Histograms of the discrete jumps �x �solid line� and
�y �dashed line� for a vacancy defect. �b� Histograms of the dis-
crete jumps �x �solid line� and �y �dashed line� for an interstitial
defect. In this figure, the jump distances are measured in their natu-
ral units. �x is given in units of a0, and �y is given in units of
�3a0 /2

FIG. 7. �r2 versus time showing the diffusion of the vacancy
defect at fT / fT

m=0.62. The dashed line is a linear fit, consistent with
linear two-dimensional diffusion.

FIG. 8. Diffusion constant D as a function of temperature fT / fT
m.

Filled circles: vacancy defect. Open triangles: interstitial defect.
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ture increases, the transition states V3 and V4� occur with
greater probability, indicating that the defect can reorient
more easily. A greater number of defect reorientations com-
bined with higher thermal excitation leads to a higher diffu-
sion constant at higher temperature. Since the gliding motion
is one dimensional, the defect can only move away from its
starting position as rapidly as a one-dimensional random
walk if no reorientation occurs. Reorientation of the glide
direction produces a more two-dimensional diffusion which
allows the defect to move away more rapidly from its start-
ing position.

The interstitial defect spends much more time in the tran-
sition configuration I3 than in any other configuration, as
indicated in Fig. 9�b�. The excited I4� configuration for the
interstitial defect also appears with much higher probability
than the excited V4� configuration for the vacancy defect case.
Overall, this produces a much higher probability for reorien-
tation of the direction of motion of the interstitial defect, and
makes its diffusion more two dimensional than that of the
vacancy defect at all temperatures considered here. The re-
sult is a greater mobility of the interstitial with respect to the
vacancy.

VI. DISCUSSION

An open question is how general our results are for defect
motion in other two-dimensional systems where the particles
have different types of interaction potentials. Although it is
beyond the scope of this paper to address this issue in detail,
we believe that our results should hold for any two-
dimensional system with relatively soft particle-particle in-
teractions in which the ground state is a triangular lattice.
Very short range potentials, such as hard sphere interactions,
are likely to produce significantly different behavior. It is
possible for two-dimensional systems to have some other
type of ordered ground state, such as a square or rectangular
lattice. These lattices have different available gliding direc-
tions compared to the triangular lattice, so there could be
either fewer or more modes of motion available to the de-
fects. This would be an interesting issue to explore in the
future.

Our results could have some implications for the mobility
of defects in other two-dimensional systems where the num-
ber of vacancies or interstitials can be carefully controlled,
such as superconducting vortices �18,19� or colloids �20� in-
teracting with periodic substrates. At particle densities where
there is one particle per substrate minimum, termed a match-
ing density, the system is free of topological defects, while
vacancies appear for slightly lower particle densities and in-
terstitial defects form at slightly higher particle densities. If
the interstitial defects remain more mobile than vacancy de-
fects in the presence of a substrate, the interstitials should
depin more readily than the vacancy defects. In the case of
superconducting vortices, this would imply that the critical
current drops off more rapidly above the matching density
�when interstitials are present� than below the matching den-
sity �when vacancies are present�. This is agreement with
earlier observations �19�.

Vacancy and interstitial defect motion has also been stud-
ied in three-dimensional systems in the context of atomic
crystals. Such systems are not only massive, making them
sensitive to vibrational modes, but also can form a variety of
different lattice structures depending on the details of the
atomic interactions. A convenient method for producing iso-
lated vacancies or interstitials in an atomic crystal is through
ion damage processes. We note that in this context, unusually
high mobility of self-interstitial atoms �SIAs� has been ob-
served and attributed to the high likelihood of rotational mo-
tions for the dumbbell atomic configurations associated with
the SIA �21�. Although the dimensionality of the resulting
motion is different, this resembles our observation that inter-
stitial defects are more mobile than vacancy defects due to
the greater likelihood of defect reorientation.

Another issue is the relative stability of interstitial and
vacancy defects. Due to the geometry of our system, which
has periodic boundary conditions, both the interstitial and
vacancy defects are completely stable since there is no free
surface where the defects can annihilate. In a real crystal, the
more mobile species of defect will reach the edge more rap-
idly and annihilate. Thus, one implication of the faster mo-
bility of interstitial defects is that a crystal that forms with an
initial population of vacancy and interstitial defects will,
over time, experience a greater loss of interstitial defects to
the crystal edge compared to vacancies, particularly if there
is a strain field that helps drive the defects to the edge. Both
interstitials and vacancies can still annihilate within the crys-
tal, but the difference in edge annihilation could result in a
dominant population of the slower moving vacancy defects
in the relaxed crystal.

VII. CONCLUSIONS

In summary, we have studied the topological configura-
tions and dynamics of individual vacancy and interstitial de-
fects in a triangular two-dimensional colloidal crystal. We
use a Voronoi cell construction to characterize the different
topological configurations assumed by the defects. For va-
cancy defects, we find the same configurations that were ob-
served in recent experiments. We show that interstitial de-
fects, which were not studied in the experiment, appear in

FIG. 9. �a� Probability to observe different defect configurations
for the vacancy defect. Open circles: P�SV�+ P�V2a�; filled squares:
P�V3�; open triangles: P�V4��. �b� Probability to observe different
defect configurations for the interstitial defect. Filled squares: P�I3�;
open circles: P�I2�+ P�I2d�; open triangles: P�I4��.
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distinct configurations and have a significantly higher mobil-
ity than the vacancy defects. The mobility is affected by
short lived excited configurations which have four or more
fivefold or sevenfold coordinated colloids surrounding the
defect. The defect diffusion process is one dimensional at
short time scales when the defects glide along the symmetry
directions of the crystal. Periodically, the defects enter a tran-
sition configuration which has higher symmetry than the
glide configuration. This permits the defect to reorient its
glide direction when it returns to a glide configuration after a
short period of time. As a result of these reorientations, linear
two-dimensional diffusion occurs in the long time limit. Ap-
plication of an anisotropic temperature causes the diffusion
process to favor one of the permitted gliding directions. We
describe the mechanisms of defect translation in detail, and

show that the vacancy defect has one mode of motion, but
the interstitial defect has three. It is these additional modes of
motion that give the interstitial defect a much higher prob-
ability of undergoing a reorientation transition than the va-
cancy defect at a given temperature, causing the interstitial
diffusion to be more two-dimensional in character and there-
fore faster.
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